Lannan Jiang

■lannan.jiang@gmail.com | **J**+86 159-0286-9130 | **in**lannan-j-33664b112 | **l u** Website

SUMMARY

Enthusiastic engineer with experience in computer architecture and ASIC design. Currently cofounder and chip design lead at an early-stage startup, contributing to design architecture and implementation. I learn quickly and enjoy tackling complex hardware design challenges.

EDUCATION

ETH Zurich: MSc in Electrical Engineering and Information Technology **Worcester Polytechnic Institute (WPI)**: BSc in Electrical and Computer Engineering

Sep 2021 - May 2024

Sep 2017 - May 2021

SKILLS

- Hardware Skills: SystemVerilog, Verilog, Calibre, QuestaSim, Synopsys DC, Innovus, Virtuoso, Tetramax, Linux, Xilinx FPGA, Microcontrollers, RISC-V/x86 Assembly, ATE Testing, DFT
- **Software Skills:** C, C#, Python (Data processing, ML/DL/CV), MATLAB (DSP/Data processing), Tcl, BASH, Linux OS, OpenMP, CUDA, LaTeX, Git

RECOGNITIONS

- Bachelor of Science High Distinction
- IEEE HKN Honor Society Member
- WPI Merit Scholarship

WORK EXPERIENCE

Cofounder, Chip Design Lead Tattvam AI - Hybrid

Mar 2025 - Present

- Leading chip design efforts for an AI agent platform accelerating semiconductor development workflows
- Overseeing architecture definition and implementation of prototype designs to validate automated design methodologies
- Collaborating with industry advisors to align design goals with state-of-the-art semiconductor practices
- Engaging with chip designers and engineers to gather feedback, validate pain points, and refine product requirements VLSI Teaching Assistant ETH Zurich - Zurich, Switzerland Feb 2024 – May 2024
- Assisted 12 lab exercises covering synthesis flow, scan chain insertion, testing, timing, P&R, and backend flow
- Supported RTL-to-GDS flow tutorials using Questasim, Synopsys DC, TetraMax, Calibre, and Innovus
- Guided 70+ students through backend design flow and physical implementation exercises in Linux systems

Application Engineering Intern Analog Devices - Raleigh, NC, USA

Apr 2021 – Aug 2021

- Developed automated test systems for RF transceiver ICs using C# .NET framework, enhancing test efficiency
- Integrated multiple test instruments (e.g., DMM, spectrum analyzer, oscilloscope, RF switch box, power supply) into the NI DAQ system, streamlining power data collection and analysis
- Improved system performance by contributing to and optimizing 7000+ lines of C# code, resulting in faster, more reliable testing procedures
- Recognized for technical excellence and delivering impactful results on time by the Wireless Platform Group

Class Tutor Worcester Polytechnic Institute - Worcester, MA, USA

Sep 2020 - Dec 2020

- Led 2 undergraduate lab sections in Wireless Networks and Continuous-Time Signal Processing.
- Mentored MATLAB-based signal processing projects, ensuring technical accuracy.
- Evaluated and graded midterm and final exams for 2 courses.

Central Applications Engineering Intern Analog Devices - Wilmington, MA, USA

May 2020 - Aug 2020

- Engineered Linux-based environments for RF transceiver validation, significantly accelerating testing workflows
- Designed and implemented FM transceiver and QPSK modem prototypes using GNURadio, enabling rapid functional verification of integrated transceivers
- Collaborated with senior engineers to analyze bit patterns, delivering actionable insights and weekly progress reports that informed design decisions

RESEARCH & THESES

Master Thesis ETH Zurich - Zurich, Switzerland

Oct 2023 - Apr 2024

Title: A RISC-V ISA Extension for Pseudo Dual-Issue Monte Carlo on Snitch

- Designed and implemented custom RISC-V ISA extensions to enable pseudo dual-issue in Snitch core for HPC
- Developed a bare-metal Monte Carlo simulation using C and assembly language with the leapfrog method to support parallel execution
- Verified ISA extensions via RTL simulation and C-based testing, ensuring full functionality and data accuracy
- Achieved significant improvements in FPU utilization (90%) and data throughput (1.4x) through targeted microarchitectural enhancements and low-level optimizations
- Conducted extensive performance benchmarking and enabled visualization of Monte Carlo workloads using Python, yielding insights for optimization strategies and data throughput improvement

ATE Testing on Kairos SoC ETH Zurich - Zurich, Switzerland

July 2023 - Aug 2023

- Executed the first successful continuity test, a functional test using test vectors generated via the VCD method, and a JTAG minimal boost test
- Measured reference clock frequency, collected static power data for both the core and pads, and assessed dynamic power consumption of the chip's core

Iguana SoC Tape-Out & Physical Design ETH Zurich - Zurich, Switzerland

Feb 2023 - Jun 2023

- Contributed to the first attempted open-source tape-out for 64-bit Linux-capable RISC-V <u>Iguana</u> SoC, a RISC-V-based chip, as part of a 12-person team using the IHP130 open-source PDK
- Led and realized physical design, achieving DRC-clean and LVS-clean layout for Iguana using commercial EDA tools (i.e. Innovus, Synopsys DC, Calibre)
- Optimized standard cells within the PDK using Virtuoso, improving timing performance and reducing chip area
- Conducted chip-level analysis to compare open-source and closed-source designs, successfully delivering the final .gds file to the foundry, meeting strict timelines

Semester Thesis ETH Zurich - Zurich, Switzerland

Feb 2022 - May 2022

Title: Investigation and Integration of Floating-Point Div/Sqrt Unit

- Investigated the iterative Radix-4 SRT algorithm from OpenC906 and compared to the hard-coded Radix-2 algorithm
- Integrated a 32-bit RISC-V floating-point division and square root unit into the PULPissimo architecture for enhanced performance (github)
- Developed and executed SystemVerilog testbenches for RTL verification, ensuring compliance with IEEE-754 standards
- Implemented the synthesis process using TSMC 65nm, achieving a 46% area reduction and doubling the maximum frequency

ADDITIONAL CONTRIBUTIONS

Time Slot Matching WeChat Mini Program Chengdu, Sichuan, China

Jan 2025 - May 2025

- Initiated and drove product vision for a WeChat mini program addressing group scheduling pain points
- Successfully launched the program, reaching 2k+ users and validating product-market-fit

Bachelor Thesis WPI - Worcester, MA, USA

Sep 2020 - Mar 2021

Title: An Intuitive User Interface for Teleoperated Robotic Neuro-Intervention

- Conducted a literature review on surgical haptic feedback systems and selected electronic components aligned with project requirements
- Designed and developed linear and torque-based force feedback mechanisms to enable remote brain surgery using standard guide wire techniques
- Led the programming and integration of PID controllers on an Arduino Mega 2560 to acquire and process haptic feedback data
- Calibrated the system for accurate force feedback and delivered the first working prototype in collaboration with mechanical engineering peers

Independent Research: Secret Key Generation with UWB WPI - Worcester, MA, USA

Mar 2020 – Sep 2020

- Generated security key pairs using channel impulse response (CIR) measured by Decawave EVK 1000
- Conducted ranging error analysis and the effects of human body obstructed line-of-sight condition on the multipath characteristics of the ranging system
- Delivered a 40-page technical report on the experiments and obtained results

NASA University Student Launch Initiative (USLI) - Huntsville, Alabama, USA

Sep 2018 - Apr 2019

- Integrated transceivers Adafruit RFM95W LoRa for the communication systems for the payload system of the rocket
- Collaboratively designed PCB layout using Fritzing and carried out LOS/NLOS tests for performance
- Delivered design reviews to NASA and participated in on-site rocket launch